
ORC 69-29 
sePTEMBER 1969 

.....,..., POLl IES 0 CAP CITY EXPANSION 
K OW D D G OWTH 

MALCO,LM W. KIRBY 

0 E 

c 
OL 0 

IV Y 0 CALl C11NI • E KELEY 

IJO 



OPTIMAL POLICIES FOR CAPACITY EXPANSION UNDER KNOWN DEMAND GROWTH 

by 

Malcolm W.  Klrby 
Operations Research Center 

University of California, Berkeley 

SEPTEMBER 1969 ORC 69-29 

This research has been supported by the Office of Naval Research under 
Contract N00014-69-A-02OO-101O with the University of California. 
Reproduction in whole or  in part is permitted for any purpose of  the 
United  States Government. 



ACKNOWLEDGEMENT 

I wish to express my gratitude to my Thesis Committee, 
Professors Ronald IV. Shephard, W. S, Jewell, and W. G. O'Regan 
tor their encouragement and comments.  I am particularly grate- 
ful to Professor Shephard tor his careful reading of this manu- 
script, for his suggestions, and for his continuous support. 

I am grateful to Phillip Haug of the U. S. Forest Service 
for his help in computer programming. 

Finally, I am grateful to my wife for her faith and for 
cheerfully enduring my absence from the family. 



ABSTRACT 

This study is concerned with optimal policies for a sequence 
of discrete capacity expansions in response to expected 
growth in demand over an arbitrary planning interval. 
Demand growth is an arbitrary, differentiable, strictly 
increasing function of time.  We assume economies of scale 
for investment costs. Time intervals between capacity 
expansions, as well as the magnitudes of the expansions, are 
continuous variables. Discounting is continuous. 

The model used for a single capacity expansion is a member 
of an isomorphic family. The first model includes invest- 
ment and shortage costs; the second includes investment, 
shortage and production costs; and, the last includes 
investment costs and revenue. The first model was chosen 
for analysis. 

An asymptotic stationary model is derived for a linear demand 
function. This model assumes that capacity expansions are 
of equal size. 

Optimal policies have the following property:  either an 
expansion of size zero is optimal or capacity must be 
expanded to equal or exceed demand at the time of an 
expansion. 

By detailed analysis of a single expansion problem, an 
algorithm is developed for determining both the optimal size 
and time of installation for the expansion.  For a sequence 
of expansions over some planning horizon, a similar calcula- 
tion is intractable. However, by taking discrete values for 
the size of expansion, which is reasonable, it Is possible 
to use part of the algorithm for the single expansion problem 
to determine optimal sizes, times and number of expansions 
over any planning horizon. 

Computations of optimal sizes, times and number of expansions 
are made for various demand curves. These computations show 
that the size and time of the first expansion (as a function 
of the planning interval) converge to fixed values.  In the 
case of linear demand laws, it is shown that the general 
treatment used converges, as the planning interval tends to 
infinity, to the solution for a stationary model. 

It is concluded that the models analyzed are susceptible to 
practical application, because the solution for the first 
expansion is not sensitive to the demand law used. 
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GLOSSARY OF FREQUENTLY USED SYMBOLS 

D(y) = Demand function 

F( ) ■ Inverse function of D 

I   - Length of planning interval 

v   « Initial capacity at beginning of planning interval 

x   •» Size of a capacity expansion 

t   •» Time at which a capacity expansion occurs 

n   ■ Number of expansions 

k   ■ Investment cost constant 

a   ■ Economies of scale constant for investment costs 

p   = Penalty cost constant 

r   " Interest factor for present value computations 
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CHAPTER I 

INTRODUCTION 

This paper is concerned with optimal policies for a sequence of discrete 

capacity expansions In response to expected growth In demand over an 

arhltrary time interval. Demand refers to a single commodity.  For each 

expansion, there are two decision variables: the size of the expansion and 

the time at which it occurs.  Capacity expansion over time is a step function. 

Discounting is continuous. The problem is analogous to a class of Inventory 

problems in which order quantities are substituted for capacity increases. 

Several investigators have studied aspects of the general problem of 

capacity increases.  Since problems associated with continuous expansion have 

been widely studied, we mention here only a few references. Arrow, Beckman 

and Karlin [ 1 ] studied a model in which capacity may change continuously 

(positively or negatively) over time with an upper bound on the rate of 

change at any time. They assumed constant returns to scale for all operating 

and investment costs. Bradley [ 2 ] studied a multi-commodity continuous 

expansion problem. 

Hlnomoto [ 7] studied some effects of decreasing investment and 

operations costs over time which result from technological Improvements. 

Most of the other investigations assume: capacity expansion to be a 

step function; obsolescence of plant is omitted from consideration; lead time 

is not considered; economies of scale exist for plant investment costs. 

Following is a brief summary of the more recent studies. 

Chenery [ 3] assumed no shortages, a constant rate of growth in demand 

and equal spacings between a finite number of capacity Increases. 

Howard and Nemhauser [ 8] consider a capacity expansion model analogous 

to an inventory model with demands known and capacity changes occurring at 

discrote points in time. They assume a composite convex function for the 
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combined shortage and excess capacity costs, hence economies of scale for 

investment costs are not explicitly considered. The model approximates the 

situation in which continuous capacity expansions are permitted. Manne [ 9] 

and [10] studied a stationary policy for a linear demand function over an 

infinite planning interval. He also considered a stationary model in which 

demand is a discrete random variable with an infinite planning interval. 

Manne and Veinott [10] studied a model which assumed that capacity 

increases occur at given points in time, nondecreasing demand with shortage 

defined as the difference (positive) between demand and capacity only at the 

time of a capacity increase. 

Srinivasan [10] studied a model which assumed no shortages and 

exponential demand growth over an infinite planning Interval. 

Erlenkotter [10] studied a model which assumed an infinite planning 

Interval, constant growth rate of demand, and shortage defined as the 

difference (positive) between demand and capacity only at the time of a 

capacity increase. 

The U. N. Bureau of Economic Affairs [11] published a study of a single 

expansion model, with piece-wise linear demand growth without discounting, 

in which an optimal policy is one which minimizes the Investment cost per unit 

of output over a finite planning interval. 

In this study, we allow demand to grow in an almost arbitrary way to 

account for the large variety of growth patterns which appear to be typical. 

For example, the world demand for nitrogenous fertilizer during 1955-1960 and 

cement during 1947-1960 grew at decreasing  rates [12]. Hence a power 

function with an exponent less than one is a convenient way to describe 

demand as a function of time. A contrary condition prevails for glass 

container demand in Central America where demand in 1959 was growing 

geomctrijally  [11].  It is not uncommon to observe demand growing at an 



Increasing rate at first but at a decreasing rate later.    A representation 

of  such a demand pattern takes the form of an "ogive," a curve often used  to 

describe biological growth.    Therefore,  this study assumes that demand is a 
* 

strictly Increasing, differentiable function In order to account for a wide 

variety of growth situations.    Monotonlcity Is required only for the unique- 

ness properties of the solutions.    At the beginning of the planning interval, 

initial capacity may be larger or smaller than demand and initial demand la 

nonnegative. 

An important assumption of most pre-lnvestment studies is that invest- 

ment costs are subject to economies of scale, e.g.,  double the capacity at 

less than double the cost.     This is a wide spread phenomena.    Haldi and 

Whltcomb  [ 6]  report on 221 cases of various kinds of industrial equipment  In 

1A countries,  84% of which were characterized by an economies of scale 

parameter of    "a"    which is less than one, with a modal value of 0.6.    This 

seems to support the "two-thirds rule-of-thumb," commonly used in engineering 

studies.     In United Nations  [ll],   the values of 0.75 and 0.6 were used for a 

bottling plant and a fertilizer plant,  respectively.    Chllton  [ 4]  reviewed 

36 types of chemical, petroleum and primary metal plants and concluded that a 

value of 0.6 is safe fo use for pre-design economic studies.    In this study, 

we assume that a facility of capacity    "x"    is constructed  (or expanded)  at a 

a cost of    kx     where    k>0,0<a<l.    This assumption was made by 

Manne [ 9] and  [10],  Srinivasan do],  Erlenkotter   [10]  and the United Nations 

Bureau of Economic Affairs  [11]. 

Economies of scale for operating costs  (excluding costs for capital) 

also occurs for many industries but appears to be less widespread and often 

less important than economies of scale for Investments.     For many industries, 

consumption of fuel, electric power,  raw materials are almost proportional  to 

production.    Capital Intensive industries,  such as process industries,  tend 



to exhibit lower labor requirements per unit produced as plant size Increases; 

however, for these Industries labor cost Is often small compared to capital 

cost. Accordingly, primary emphasis In this paper Is given to economies of 

scale for Investment costs. 

Since the time intervals between expansions are continuous variables, we 

assume continuous compounding with an interest factor of "r" so, the 

present value of  1 expended t years, hence, amounts to e  ' . 

The number of Increases In capacity, "n" Is a parameter of significant 

interest. For a finite planning horizon, as "n" becomes large, the size 

of some, perhaps most, of the Increases could become small and in any real 

situation, It may not be sensible to permit very small Increases.  Accordingly, 

one could set a lower bound on the size of a capacity Increase, however, we 

omit this from explicit consideration. 

In summary, the class of problems which are considered herein are 

characterized as follows: 

(1)    demand per unit time is a monotone increasing, continuously 

dlfferentlable function of time, 

(il)   capacity expansion is a step function, 

(ill)  shortages and excesses of capacity are permitted. 

(iv)   the time intervals between capacity expansions as well as the 

magnitudes of Increases are continuous variables, 

(v)    discounting is continuous, 

(vl)   the planning interval is an arbitrary finite length of time. 

(An infinite planning interval is also included for a linear 

demand function.) 

(vll)  investment costs are subject to economies of scale, 

(vill) cost components for optimization are the present values of 

Investment cost and shortage cost or production cost or net 

revenue. 
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In Chapter II, we consider a family of single expansion models.    The 

first model is concerned with optimal policies for investment and shortage 

costs—shortage cost arising as a result of penalties for supplying demand 

via some expensive alternative means such as renting operating facilities, 

or importing commodities.    The second model does not penalize shortages 

directly but instead is concerned with optimal policies for investment cost 

and revenue produced by the installed capacity.    The third model considers 

investment costs, shortage costs  and production costs.    These models are 

shown to be isomorphic to one another; consequently, only one is used for 

subsequent analysis and computation. 

Chapter III considers  in detail the single expansion model.    The optimal 

time of expansion is considered as a function of the size of the expansion. 

Then, the optimal xize of expansion is considered.    Finally, an algorithm 

is given for finding the optimal policy. 

Chapter IV considers a sequence of expansions over time.    A discrete 

dynamic programming algorithm is  developed. 

Chapter V considers an asymptotic stationary model for a linear 

demand function.    It is shown to be a limiting case of a sequential 

expansion model of Chapter IV.    The resulting equations  are the same as 

found by Manne [9] and Erlenkotter [10] using quite a different approach. 

In Chapter VI we present some computational results for single and 

sequential expansion problems among which is a direct comparison of some 

finite horizon expansion policies with an asymptotic stationary policy. 

Although the number of computations is limited, some interesting 

phenomena appear.    The most Interesting is that the size of the first 

expansion (as a function of the planning interval)  and the time of 

installing the expansion converge to fixed values.    Moreover, for a 

given set of parameters, the values are the same for a family of 

demand functions. 

tm 



CHAPTER II 

A FAMILY OF SINGLE EXPANSION MODELS 

In this chapter we consider a family of models which characterize 

common investment situations.    We assume shortages and excesses of capacity 

are permitted.     For all models a single expansion of size    "x"    occurs at 

time    "t"   , t e   [0,1]    and the present value of the investment cost is 

I(x,t)    where: 

I(x,t) - kxae"rt 

where "k" > 0 , is the cost per unit of capacity, "a" is a dimensionless 

scale factor, 0 < a < 1 , and "r" is the dimensionless interest factor. 

Let "v" be the initial capacity at time zero and D(t)  be the 

demand at time  t .  Then D(0)  is the initial demand at time zero.  We 

permit 

D(0) ^ v . 

Let F(*)  be the inverse function of D(t) defined as follows: 

F(v) - min{y | D(y) > v , y e [0,1]} . 

From this it follows that: 

F(D(y)) - y 

D(F(v + x)) - v + x 

F(v) - 0       if v < D(0) . 

Figure 1 shows these relationships for one of several possible configurations. 
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Define; 

U(x,t) •=  I min (D(y) ,v)e"rydy 

0 

I 

+ I min (D(y),v + x)e"rydy . 

The general form for the present value of total cost for the family of single 

expansion models is: 

J(x,t) = bjUx.t) + b2U(x,t) + b3 

where b » ^o » b- are constants. We will illustrate three models which 

arc useful in characterizing investment problems and which differ from one 

another only in the choice of parameters. 

MODEL ONE 

Assume capacity shortage at any time carries a penalty of    $p    per 

unit short.    In Figure 1,  the shortage is the shaded area between the demand 

and capacity curves.    Let    T(x,t)    be the present value of the total costs 

for investment and shortages.    Then: 

I 

T(x,t) - I(x,t)  - pU(x,t) + P   J    D(y)e"rydy 

hence 

'i " 1 ' b2 * ~p • b3 " p I D(y)e'rydy • 

This  first function has an alternate form which is more convenient to use. 
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namely: 

T(x,t)  ■= kxae"rt + p    [max  [D(y)  - v,0]e'rydy 

I 

+ p    I    max  [D(y)  - v - x,0]e~rydy  . 

t 

MODEL TWO 

Suppose revenue is earned In proportion to the output produced and that 

production is equal to the demand or capacity, which ever is smaller.  For 

example, the cumulative output in Figure la corresponds to the shaded area. 

Assume production costs are proportional to output, hence revenue means 

net revenue.  Let $q be the revenue per unit produced and R(x,t} be the 

present value of the revenue less Investment cost for an expansion of size 

x at time t over the planning period of length I . Then: 

R(x,t) - -I(x,t) + qU(x,t) . 

Model One and Model Two are simply related as follows: 

T(x,t) « -R(x,t) + constant , 

whenever p ■ q .  Here we may Interpret shortage penalty as a loss In 

revenue. 

MODEL THREE 

Suppose that in addition to Investment cost and shortage cost of Model 

One, we also incur a production cost of $c per unit produced.  Assume as 

before that the amount produced is the minimum of capacity or demand.  Let 

P(x,t) be the present va.-e of investment, shortage and production costs. 
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Then; 

P(x,t)  - I(x,t) -  (p - c)li(x,t) + P   J    D(y)e"rydy 

0 

This Is of the same general form as    J(x,t)    where 

b    - 1   , b    - -(p - c)   , b    - p D(y)e 1J,dy 

x 

1 .-ry. 

SUMMARY: 

We have shown that three different models of Investment situations 

belong  to  the general family of models defined by    J(x,t)    and  that  they 

differ from each other only In the  choice of parameter values.     The properties 

of this  family may be derived from or discussed in terms of any model in 

the family,  in particular,  the first model with cost function    T(x,t)  . 



12 

CHAPTER III 

ANALYSIS OF THE SINGLE CAPACITY EXPANSION PROBLEM 

COST AS A FUNCTION OF    "t" 

Consider the  cost function    T(x,t)   .     We will use the following 

abbreviated notation.     Let    T(t   |  x)    be the cost function for a given value 

of    x    and let 

T'(t  | x) =-^T(t,x) 

with similar notations  for other partial derivatives.    Recall: 

T(x,t)  = kxae'rt + p    I    tnax(D(y)  - v,0)e"rydy 

0 
(1) 

I 

+ p    I    max(D(y)  - v - x,0)e rydy . 

In general the first partial derivative with respect to t is: 

T'Ct | x) - -rkxae"rt + pe"rtinax(D(t) - v,0) 

(la) 
- pe  max(D(t) - v - x,0) . 

Assume that    v < D(I)    and that    x    is restricted so that    F(v + x)  < I  . 

Hence    F(v)   < I  .    The relative magnitude of the initial conditions    v    and 

D(0)    provide two cases:    D(0)   < v    and    D(0)   > v .    For each case there 

are three intervals for    t    for a given value of   x . 

Case A:    v > D(0) 

U) t c   [0,F(v)] 
or    D(t)  - v < 0 

Hence: T'Ct  I  x) - -rkxae'rt < 0 . 
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(il)       t e  (F(v).F(v + x)] 
or    D(t)   - v > 0 

and    D(t)  - v - x  < 0 

Hence: 

(111)     t E  (F(v +x) ti] 
or    D(t)  - v - x > 0 

Hence: 

T'U  | x) - e"rc(-rkxa + p(D(t) -.v)] 

V(t  | x) - e~"l-rkxa + px]  . 

Remark: 

T'Ct  |  x)    is continuous  for all    t c  [0,1]    because 

T'Ct   | x) 

T'Ct   I  x) 

u a -rF(v) ■ -rkx e 
t-F(v) 

t-F(v+x) 
(-rkxa + px)e-rF(vf,t)   . 

Consider two intervals for x 

Al: 0 < x < if) 
1-a 

A2 ■(f) 

1_ 
1-a 

< x < D(I) - v 

1 
1-a 

Define »- (f)    • 
Case Al: 

0 < x < w -> ox   ^ < PX rk , 

or 

px < rkx . 

Hence 
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T'Ct I x) < 0     for t c [F(v + x),I) . 

Now [-rkx + p(D(t) - v] is strictly increasing in t for all 

t e [F(v),F(v + x)] hence 

T'Ct | x) < 0     for all t c [F(v),F(v + x)] . 

Let t (x) be the best choice of t for a given x . Then: 

t (x) - I for 0 < x < (f) 
1_ 

1-a 
« w . 

Case A2; 

The inequality of Case A2 implies: 

px > rkx 

Hence 

T'Ct I x) > 0     for t e [F(v + x),!] . 

But from (i) we have 

T'Ct I x) < 0     for t e [0,F(v)] 

Hence    T' (t   |  x)    changes sign from negative to positive for 

t c  (F(v),F(v + x))    and since    [-rkx* + p(D(t) - v)]    is strictly increasing 
it 

in    t    it follows that there exists a unique    t (x)    satisfying 

D(F(v))< D(t*(x))- (—)xa + v < D(F(v + x)) 

and 

t*0 x) - F(— xa + vl for    w < x < D(I) - v . 
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Summary of Case A;  v > D(0) 

t*(x) 

'I for 0 < x < mln {w,D(I) - v} 

M— xa + v) for w < x < D(I) - v] 

Note;  for t (x) < I we have: 

(2) F(v + w) < F(v + w1"^8) < F(v + x) . 

Case B: 0 < v < D(0) 

1 
a 

[i(D(0)-v)]  . Denote z » |-*- (D(0) - v)|  . Here we must consider several Intervals 

for x depending on the relative size of w and D(0) - v as follows. 

B(l)a: 0 < x < w < D(0) - v 

B(l)b:     0 < w < x < D(0) - v 

B(l)c:     0 < w < D(0) - v < x < z 

B(l)d:     0 < w < D(0) - v < z < x < D(I) - v 

B(2)a: 0 < x < D(0) - v < w 

B(2)b:     D(0) - v < x < w 

B(2)c:        D(0) - v < w < x < D(I) - v 

Note;    Cases B(l)a through 3(1)d assume 

w < D(0) - v 

whereas Cases 6(2)a through B(2)c assume 

w > D(0) - v . 

Note: 0 < v < D(0) -> F(v) - 0 hence for B(l)a and'B(l)b; 
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x < D(0) - v -> JD(t) - v - x > Oj 

(D(t) - v > 0 

V t c [0,1] 

hence T'(t | x) - e'rt[-rkxa + px]  for all t in the Interval t c [0.,I] 

This single form for t'Ct | x) simplifies the analysis for Cases B(l)a 

and B(l)b. 

Case B(l)a; 

x < w ■«> px   < rk 

•<> px < rkx 

-> -rkx + px < 0 

thus Equation (la) is nonpositive, i.e., 

T'Ct | x) < 0    V t e [0,1] 

hence 

t (x) ■= I for 0 < x < w . 

Case B(l)b: 

w < x < D(0) - v . 

1-a 
This implies that -rk + px   > 0 or 

-rkx + px > 0 , 

thus Equation (la) is positive, i.e.. 

Hence 

T'(t I x) > 0     V t e [0,1] . 

t (x) - 0     for w < x < D(0) - v 
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t*(x) 

Summary for Case B(l)a and B(l)b 

I for 0 ^ x ^ w < D(0) " v] 

JO for 0 < w < x < D(0) - v] 

Case B(l)c; 

(2a) 0 < w < D(0) - v < x < z . 

Consider the two intervals on  t : 

(i)  t e (F(v + x),I] 

T'Ct | x) "  e'rt[-rkxa + px] 

(ii)  t e [0,F(v + x)] 

T'U | x) = e'rt[-rkxa + p(D(t) - v) ] . 

1-a Now (2a) implies -rk + px   > 0 or 

-rkx + px > 0. 

17 

Hence 

(3) T'U | x) > 0    V t E (F(v + x),I] . 

Note, however, that  [-rkx + p(D(t) - v)]  is strictly increasing in t 

and -rkx + p(D(0) - v) may be nonnegative (when t - 0) .  But Case B(l)c 

implies: 
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1 

/^j1"3 < D(0) v => ^ < (D(0) - v) 
P 

1-a 

=> (D(0) - v)a < ^- (D(0) - v) 

*>  D(0) " v < [^ (D(0) - v) 

Hence for 
D(0) - v < x < [-^ (D(0) - v)]  . Case B(l)c means that 

rkxa < p(D(0) - v) -> -rkxa + p(D(0) - v) > 0 

-> T'(t 1 x) > 0 at t - 0 

Since    T*(t   ]   x)    is strictly increasing this implies 

(A) T'(t   | x)   > 0 V t e  [0>F(v + x)] 

Inequalities (3) and (4) together imply that 

T'Ct 1 x) > 0     V t e [0,1] . 

Hence:  t (x) = 0 for Case B(l)c. 

Remark! 

Whenever    [% (D(0) - v)]' > D(I) - v    Case B(l)c can be written: 

because we 

w < D(0) - v < x < D(I) - v 

have restricted x e [0,D(I) - v] 

Case B(l)d: 

< w < D(0) - v < z < x < D(I) - v 



For the two intervals on    t  : 

(i)      t E   (F(v + x),I] 

T'Ct   |   x)  - e"rt[-rkxa + px] 

(ii)    t e  [0,F(v + x)] 

r(t   |  x)  - e'rt:[-rkxa + p(D(t) - v)]   . 

Case B(l)d implies 

rl 
19 

rk < px 
1-a 

rkx    < px 

-rkxa + px > 0 => T'Ct  |  x)  > 0 for    t e  [F(v + x),I]   . 

But Case B(l)d also implies 

Ä (D(0) v)   < xa -> p(D(0)  - v)   < rkxa 

=> -rkxa + p(D(0) - v)   < 0 

^> T'(t   |  x) < 0  . 
t-0 

Since [-rkxa + p(D(t) - v)] is strictly increasing there exists a value 

t (x) e (0,F(v + x)) such that V (t  (x) | x) - 0 and t (x)  satir.fies 

D(t*(x)) - — xa + v < (v + x) 
P 

or 

(5) :*(x) - F(f xa + v) — xa + v) < F(v + x) 

for Case B(l)d.  Summary for w < D(0) - v and 0 < v < D(0) 
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1 for 0 < x < w 

t (x) =\0 for w < x < mln {z,D(l) - v} 

F(v + wl"axa)  for z < x < (D(I) - v) 

Case B(2)a: 

0 < x < D(0) - v < w 

This implies that -rkx3 + px < 0 , and since T^t | x) « e~  (-rkx + px) 

for all t c [0,1] , 

T'Ct 1 x) < 0 . 

Hence  t (x) = I for Case B(2)a. 

Case B(2)b; 

D(0) - v < x < w . 

Consider the intervals on    t 

(i)       t  e  [0,F(v + x)] 

-rt.    .   a T'Ct  1 x) - e_rt(-rkxa + p(ü(t)  - v)) 

(ii)    t e  (F(v + x),I] 

T'Ct  |  x) - e"rt(-rkxa + px)   . 

Case B(2)b implies 

1-a a 
px   < rk ■> px < rkx 

-> -rkx + px < 0 

hence  T'(t I x) < 0 for t E (F(V + x),l] . But Case B(2)b also implies 
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p(D(0) - v) < px => -rkxa + p(D(0) - v) < -rkxa + px < 0 

hence 

T'U | x) < 0 
t-0 

Since [-rkxa + p(D(t) - v)] is increasing in t , and since T'Ct | x) <, 0 

at t » 0 as well as t e (F(v + x),I] , It follows that 

T'(t | x) < 0     V t c [0,1] . 

Hence  t (x) = 1  for Case B(2)b. 

Case B(2)c: 

D(0) - v < w < x < D(I) - v , 

or 

-rkxa + px > 0 . 

Hence 

T'U | x) > 0    V t e (F(v + x),I] . 

Now, since x > (D(0) - v) , 

T'U | x) 
t-0 

< [-rk(D(0) - v)a + p(D(0) - v)]e 
-rt 

But Case B(2)c implies 

D(0) - v < w , 

or 

p(D(0) - v) < rk(u(0) - v)a . 
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Hence 

T'it   |  x) < 0  . 
t-0 

a Since    [-rkx   + p(D(t)  - v)]     is strictly increasing in    t    there exists a 

value    t   (x)  E   (0,F(v + x))     such that    D(t   (x))  -  (~)xa + v <  (v + x)    or 

(6) t   (x)  » F (f'H < F(v + x) 

for Case B(2)c. Summary for B(2)a, B(2)b, and B(2)c, i.e., 

D(0) - v < w < D(I) - v and 0 < v < D(0) : 

t (x) 

[I for 0 < x < w 

F(— xa + vj for w < x < D(I) - v] 

Summary for all cases; 

(i)   t (x) = I for: 

0 < x < min {w,(D(I) - v)} 

(ii)  t (x) = 0 for: 

min {w,D(I) - v} < x < min <max I 

/max [D(0) - v,z] 

'min [w, 

. D(I) - v 

(D(I) - v)]. 

(iii) t*(x) = F(— xa + v) for: 

j   /max [D(0) - v,z] 

mln •/max I )  , D(I) - v) < x < (D(I) - v) . 

^min tw,D(I) - v] 
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These hold for both initial conditions, 0 < v < D(0) and 0 < D(0) < v , 

and they may be used to set up computer codes. 

Graphs of  t (x) : 

There are four possible situations for t (x) as follows.  See 

Figures 2, 3, A, and 5.  (These are drawn left continuous.) 

(i)   w > D(I) - v 

* 
t (x) 

D(I) - v 
■♦ x 

FIGURE 2 

(ii)   (D(0) - v) < w < (D(I) - v) 

t*(x) 

F^ (D(I) - v)a + •/] 'h 
F(w + v)-" 

D(0) - v 0 w 
-♦ X 

D(I) - v 

FIGURE 3 
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Note: 

_, 1-a a ,  v 
F(w  x + v) F(v + w) . 

x^w 

Note: 

Fp (D(I) - v)a + i?l < I „ 
') 

The strict inequality holds because otherwise (D(I) - v) = w which 

violates this case. 

(iii) w < D(0) - v and z < (D(I) - v) 

if F — (D(I) - v)a + v 

D(I) - v 
* x 

FIGURE A 



(iv)  w < D(0) - v and z > D(l) - v 
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t*(x) 

w D(0) - v 

H >  x 
D(I) - v 

FIGURE 5 

Remarksi 

Recall from (2), (5) and (6) that whenever t (x) - F(w ~ x + v) 

we have that 

t (x) < F(v + x) 

regardless of initial conditions v > D(0) or v < D(0) .  Hence the 

graphs of these configurations are as follows. 

Demands, 
Capacity 

D(t) 

-f—n 
0 F(v) t (x) F(v + x)   I 

H-t 

FIGURE 6a 

m*mm 
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Demand 
Capacity, 

v + x —|- 

D(0) 
v 

D(t) 

-H-t 
t (x) F(v + x)   I 

OPTIMAL x 

FIGURE 6b 

Let T(x) = T(t (x) ,x) . There are several cases to examine as follows. 

I: w > D(I) - v 

II: D(0) - v < w < D(I) - v 

III: w < D(0) - v and z < D(I) 

IV: w < D(0) - v and z > D(I) 

- v 

- v 

Case I;  w > D(I) - v ; t (x) ° I 

T(x) = kx e 
-ry 

max (D(y) - v,0)e 'dy 

T'Cx) - akxa"1e"rI > 0    V x e (0,D(I) - v] . 

Hence rain T(x) = T(0) . 

Case II: D(0) - v < w < D(I) - v . 

Case 11(a):  0<x<w;t(x)»I 

1 T(x) = kxae"rI + p  I max (D(y) - v,0)e"rydy 

0 

J 
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T'Cx) - akx^V11 > 0    V x e (0,w] . 

Hence T(x) is Increasing for all x e (0,w] . 

Case 11(b); w < x < (D(I) - v) ; t*(x) - F(v + w1"^3) < F(v + x) . 

*   C^) 
T(x) = kxVrt (t) + p J    max (D(y) - v,0)e"rydy 

0 

I 

p  1    max (D(y) - v - x,0)e'rydy . + 

t (x) 

Referring to Figure 6, we note that t (x) < F(v + x) , y e [0,F(v)) => 

D(y) - v < 0 and ye [0,F(v + x) ] => D(y) - v - x < 0 . Hence for the 

range w < x < D(I) - v we have: 

t*(x) t*(x) 

I     max (D(y) - v,0)e"rydy =  |     (D(y) - v)e'rydy 

0 F(v) 

I I 

j     max (D(y) - v - x,0)e"rydy -  j     (D(y) - v - x)e"rydy 

t (x) F(vfx) 

Hence the cost function may be written: 

t*(x) 

T(x) - kxae'rt  (X) + p    J (D(y) - v)e~rydy 

F(v) 

I 

+ P   J (D(y) - v - x)e"rydy  . 
F(v+x) 

Hence:    T'(x)  - akx^V"*00  - ^ ^^  _ ^Ij   . 

m 
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Denote:    T(w + 0)   - T(x) 

with    T(0), where: 

I 

; T(0) - T(x) .    Then compare    T(w + 0) 
x-w+0 x-0 

T(0) - P    J (D(y)  " v>e'rydy  ' 
F(v) 

.ince    y c  [0,F(v)] -> D(y)  < v     And 

1 

T(w + 0)  - kwae-rF(vfw) + P    j (D(y) - v)e-rydy 

F(v) 

I 

- pw     | e'rydy  , 

F(v+w+0) 

because at    x - w + 0   . t*(x + 0) = F(v + w f 0)   .    Hence: 

T(w + 0)   - T(0)  •= kw e 
a -rF(w+v) + £W (e-rl _ e-rF(v+v)) 

/kwa _ HJe-rF(vfw) + f e-rI  . 

But 

kwa - f . 

hence 

T(w + 0)  - T(0)  - ^ e'rl  > 0  , 

or 

T(w + 0)   > 1(0) 



JTr^BBBBM ,l'.rj*-.".".T7":rr"T^.T.T:^r. 

Case lib: Conditions for T'Cx) > 0 

Recall that for x e (w,D(I) - v] we found that 

F(v + w) < t*(x) - F(v + w  xa) < F(v + x) 

and 

F(v + w1"^3) < F(v + w1"a(D(I) - v)a) < I . 

Then we can write 

29 

rrF(v+w) > e-rt*(x) > e-rF(v+w
1"a(D(I)-v)a) > e-rl ^ 

a-1 
And since x    is decreasing in x , 

£ = kw3'1 > kx3"1 > k(D(I) - v)8"1 . 

We now use these results  to find a lower bound on the derivative for 

x e  (w,D(I) - v]    as follows: 

T'(x)  > ak(D(I) - ^-VrFCvH^DCD-v)3) + £ (e-rl . ^Hv*^   | 

which is nonnegative if 

J       w      \1"'VrF(v4w1~a(D(I)-.v)a)   .   . -rl      o-rF(v+w).  > 0 aWl) - v)     e + (e       - e ) > 0 

or 

(7)    1  < - i tn [e-
rF<^>  - a^-jf-\-^^'a^-^]   , 

in which case    T(x)    is nondecreasing throughout  the interval    (w,D(I)  - v]   . 
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An example; 

The Importance of this result may be seen by means of an illustration. 

Suppose D(y)  is linear and units of time are chosen so that D(y) ■ y . 

Then 

F(v + w) = v + w . 

Suppose v = 0 . D(0) = 0 . a = ^ . r = 0.1 . k = 20 . p = 1 . then 

1 

- ■ (f) = A . Then (7), the condition on I becomes; 

I < - 10 Hn K-4-^-"! 
or 

I < 7.7 units of time approximately 

Note:  r corresponds to a bank interest rate of 6% , i.e., 

1 ry,        e - 1 
1.06 = | e ydy 

and 

r 0 .1 approximately . 

Hence, for this example. I < 7.7 units of time means x* = 0 is the optimal 

policy. 

T(x)  is not strictly decreasing for all x e (w.D(I) - v] because 

i'(x) I - UCDCI) - „ja-vnW-axD-v)'')] > 0 _ 
lx-D(I)-v 
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Furthermore,  a sufficient condition for  the existence of relative 

minima for some    x e   (w,D(I)  - v)    is 

(7a) 
1        rerF(vM] 

* 7 ln L-T-TT-J 

which implies that 

TUx) akw a-1 -rF(v+w)      p  , -rF(v+w) -rl.   ^ . 
e --^(e -e      )<0. 

x=w+0 

But if neither (7) nor (7a) holds, there still may be relative minima for 

some x c (w,D(I) - v] . 

Let x  be the solution to o 

/w\   -rF(v+w  x )   -rF(v+x)   -rl 
- e 

which yields the smallest value of T(x) over the interval (w,D(I) - v] 

Denote 

T(xo) - T(x) 

T(0) - T(x) 

x»x 

x-0 

Then x  is not the optimal value of x unless 
o r 

T(x ) < T(0) . 
o 

Case 11(b): Compare T(x ) with T(0) . 
o 

mmm 
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t*(xo) 

T(xo) 
,   a kx e o 

"^.p    j (D(y)-v)e^dy 

F(v) 

I 

+ P 1 (D(y)  - v - x )c"rydy 

F(v+xo) 

-rt  (x ) 
1«% 0    + T(t*(0),0) - pxo    j e-rydy 

o F(v+xo) 

F(vfxo) 

- P I (D(y)  - v)e~rydy 

t*(xo) 

The  intc grand of the last  term has known bounds, because  for 

t*(Xo) = F(v + w^V) < y < F(v + xo)   , 

v + w^V  < D(y)  < v + x 

and 

w^V  < D(y) - v < x     . 
o " v 

Define    A - T(xo)  - T(0)   .     Then 

|kxae 
o 

-rt 
.1-a/ -rF(v+x, 

< Ä , 



:r=5 

|kxae o 

-rt -rFCv+x,,)' 
- e 

kx1 

/ -rF(v+x )        -rt*(x )] 
+ kxa\e - e j 

o 

> A   . 

< A   , 

and 

kx' 
If       /"  V1'"   -rf(^„)      /^V"2 -rl 1-if) >    0 +(v) «rI ^- 

Then 

(f r> < [&r - j^^' ■> 4 < 0  , 

and 

Hence 

(fr-4(r-j ix* - xo    If    I > F(v + xrt) +7 o'      r 
In 

x'-O    If    I < F(V + .
1-ax*) + i in (r-tr-J 

But if 

33 
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F(V + w^V) + ^ Jin (vl-a < I  < F(v + x  ) + i Hn ■ or 
1 - 
(\l-a 

t) J 
then  the role of    x      is uncertain and    T(x )     must be compared directly o o 

with T(0) . 

Case III: w < 1)(Q) - v and z < D(I) - v . 

(See Figure. 4).  Consider four intervals:  (a)  x e [0,w] , 

(b) x e (w,D(0) - v] , (c) x e (D(0) - v,z] , (d) x e (E,D(I) - v] . 

Case 111(a) : x c [0^] ; t (x) = I 

T(x) = kxae r + p  I max (D(y) - v,0)e rydy 

0 

T'Cx) = akx3"^ rI > 0 V x c (0,w] 

T'^x) = (a - l)akxa"2e"rI < 0    V x e (0,w] . 

Here T(x) is concave increasing in this interval. 

Case 111(b): x e (w.DCO) - V] ; t (x) = 0 

Note that    max   (D(y)  - v - x,0)  » D(y)  - v - x   , and 

i 

T(x)  - kxa + p     I    [D(y) - v - x]e"rydy 

Hence 

T'Cx)  -  akx8"1 +^ (e'rI -  1) 

and 
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T"(x)  - a(a - l)kxa"2 < 0  . 

Hence    T(x)     is concava for all    x e   (w,D(0) - v]   , but the sign of    T1 (x) 

Is uncertain. 

Note that 

T'Cx) a-1 -rl « akw      e 
x=w 

and 

T'Cx) - akw a-1 + £ (e-rl . D 

x=w+0 

Hence; 

T'(x) - T'(x) 
x=w+0 

i   a-ln "rIi      £ /i -rI\ akw      [1-e      ]-t(l-e      ) 
x=w 

-   (akw3"1 - *)(1 - e-rI) 

(a - l)kwa-1(l - e"rI)  < 0 

Therefore    T(x)    is concave  for all    x  c  (0,D(0)  - v]    and if relative 

minima exist in the interval    x  e   (w,z]     they can only occur in the interval 

x c   (D(0)  - v,z]   . 

Case I'~.(c);    x e  (D(0) - v.z]   ;  t  (x)   - 0 

x 

T(x)  - kxa + p     I (D(y) - v - tfe'^dy  . 

F(v+x) 

(Note;     T(x)     is continuous at    x » D(0) - v .) 

„,,, v        ,   a-1  .  p  , -rl        -rF(v+x). T  (x) «= akx        + t- (e - e ) 
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T"(x) - a(a - Dkx3"2 + p(e-
rF(v + x))(^ F(v + x)) . 

and the signs of both I" (x) and T'^x)  are uncertain.  (Note that 

T1 (x)  is continuous at  x = D(0) - v .) 

Case 111(b): Conditions for T'Cx) > 0 and T(x) < 0 for x e (w,z] 

Recall that for Case III, we have that w + v < D(0) and F(v + w + 0) =0 

And, since: 

mi / \   i a-1 , p -rl  p -rF(v+x) T' (x) = akx   + •«1 e   - -^ e       , 
r      r 

we can write: 

-rF(v+w+0)   -rF(\H-x)   -rF(v+z) 
1 K e > e       > e 

Also recall that for the interval x c (w,z] 

p  , a-1  . a-1 _ , a-1 ■^ = kw   > kx   > kz 
r = 

Thus we may write bounds on the derivative as  follows, 

™,ii.  \ i   a-1     1>  / -rF(v+z) -rl. T' (x)  < akw       ~ ~ (* - e      )   , 

the right side of  this  Inequality is negative whenever 

-rl ^  , -rF'(v+z) . 
e        < (e -  a)   , 

or 

(8) I  > < i° U'-).,) 
Further, we can write an upper bound on    T'Cx)     as follows: 
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r(x)  > akz3"1 - ^ (e-^^^  .e-rI) 

or 

T' (x)   > akz0"1 - £ (1 - e"rI) 

because    F(v + w + 0)  =0   .    The right side of this  inequality is positive 

whenever 

kl-a 

(!)   i1-*-1. 

or 

(8a) ■'H-ir! 
If neither (8) nor (8a) holds then (9) holds, where 

(9) '•■(^■■^■M^) 
and the sign of    T'(x)     for    x e  (w.z]    is uncertain,  in which case there 

may exist relative minima in the interval    (D(0)  - v,z]   .    Note that sufficient 

conditions for relative minima for   x e  (D(0)  - v,z]    are that 

T'W 
x-D(0)-v 

< 0    and    T'U) >  0  . 
x*z 

Suppose the first condition holds.    Then 

>(0)  - v) < 1 - e 
-rl 

or 
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I  < •- in 
■rF(v+z) /w - 4) 

la    ' 

Therefore sufficient conditions  for relative minima for    x  c   (D(0)  - v,z] 

are  that 

(9a)    - in 
r 

1 \ T 1      „ -;—\ < I  < - £n il-a I r 
1 - a 

(D(0)  - v) 
-rF(v+z 

)1 - ^r)- 

(Note that whenever (9a) holds, this implies that (9) holds.) 

Remark; T'(x)  is continuous atx = z . 

T'U) 
x=z-0 

akza-l + 2 (e-rF(v+2) _ e-rl 
r 

TUx) - akz^V" (x) 

x=z+0 

+ £ (e-rF(vfz) _ ^rlj ^ 

x-z+0 

But 

t*(x) 
x«z+0 

F(v + w1"aza) 

F(v + w1"awa"1(D(0) - v)) = F(D(0)) = 0 , 

hence 

T'U) T'(x) 
x-z-0 x-z+0 

Case III(c); Compare T(x) with T(0)  for relative minima for 

x e (D(0) - v.z] 

Let x be the solution to 

.1-a (uV  '  , -rF(vfx)   -rl. 
(x)   0 ve       - e  ) 
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which yields the smallest value of    T(x)    over the interval    (w,z]   .     Denote: 

T(x)  » T(x) and    T(0)  - T(x) 
x=x x-0 

and 

A - T(x)  - T(0) 

Then 

A - kxa + p   J       ^       (D(y) - v - x)e"rydy - p    f    (D(y) - v)e"rydy   , 
F(v+x) o 

or 

L-tea-Z x(e-rF(vfx)  - e-rI) - 

F(v+x) 

) - P    ( (D(y) - v)G"rydy  . 

0 

This can be simplified by noting that    x    satisfies 

ak^3 - * x(e-rF(vfx) - e-rI)   . 

Then, 

F(v+x) 

A -  (1 - a)kx    - p   J (D(y)  - v)e'rydy . 

0 

The integrand of the last term is bounded as follows; 

0  < y < F(v + x)   , 

D(0)   < D(y)  < v + x   , 

D(0)  - v < D(y)  - v < x 
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Substituting D(0) - v , the lower bound, we can write a bound on A as 

follows: 

A < (1 - a)kxa - £■ (D(0) - v)(l - e 
-rF(v+x) 

) . 

The right side of  this  inequality is negative whenever 

(1-  a^1-*;* < (D(0)  -v)(l- e-^^))   . 

or 

(10a) € -rF(v+x). (1- a) e      <   (1 " e  "^')   , 

because 

(D(0) - v)  = zV"3 

Hence: 

(1 -  a)(^)a <   (1 - e'rF(vfx))  => T(x)   < T(0)   . 

Substituting    x   ,   the upper bound, we have; 

'a      p  *    -rF(v+x)        -rIN "     f >kx--tlx(e -e      )-pxj 

0 

F(v+x) 

A > kx" - -^ x(e e-rydy  . 

or 

'a      p   '    -rF(vfx) -rl.       £ *M -rF(v+x). 
> kx    - ^ x(e - e      )  - _ x(l - e )   , 

or 

> ^[ - (r a - e-,] 



The right side of this Inequality is positive whenever; 
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Vl-a 
1 > (?) "^ - '■tI> ■ 

or 

rI * e  < -r 
or 

I < - An 
■ r - (t r1 

Hence: 

(10b) I < - £n 
■ r - (r «> T(x) > T(0) . 

If neither inequality (10a) nor (10b) holds then a direct comparison of 

T(x) with T(0) must be made. 

Case 111(d); x e (ztD(I) - v] ; t*(x) « F(v -f- w1"^3) < F(v + x) . 

T(x) « kxae"rt  (x) + p     j max  [D(y)  - v - xf0]e~rydy 

t (x) 

* 
t  (x) 

+ p  j    max [D(y) - v,0]e~rydy . 

0 

mm* 
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t*(x) 

T(x)  = kxae"rt (X) + P    J (D(y)  - v)e'rydy 

0 

-ry. + P    J (D(y)  - v - xi^^iy 

F(v+x) 

T' (x) - akx^V"  (x)  - *■ ^^ - e^1)   . 

This is  the same expression as Case II for the range 

w < x < D(I)   - v  ,  t*(x)   - F(v + w    axa)   . 

Note that T'Cx) is continuous at x - z because F(v + w "aza) - F(I)(0)) = 0 

Case 111(d): Conditions for T'Cx) > 0 for x e (2,D(I) - v] 

Note; 

-rF(vfz) ^ -rt*(x) > -rF(v+w1'a(D(I)-v)a) e       > e      > e 

Also; 

kz8"1 > kx8'1 > k(D(I) - v)8'1 

Therefore we may write a bound on the derivative as follows, 

1-a 
T'(x) > ak(D(I) - v)a-V

rP(v+W "W^  + £ (e"'
1 - ^M) 

which is nonnegative if 

(ID 
(\l-a 

D(I)W- v) 
(e-rF(vfz) , ^r^ 

-rF(v+w1'a(D(I)-v)a) 
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Hence,   if  (11)  holds,    T(x)     is nondecreasing  throughout  the  interval 

(z,l)(I)  - v]   .     This is  the same as we  found  for  Case II,   (see  (7)),  except 

that    F(v + z)    has replaced    F(v + w)   .    When this inequality is satisfied, 

relative minima do not exist in the  interval    x  e   (z,D(I)  - v]   ,  although 

there may exist  relative minima in the interval    x e   (w,z]   .     Further,    T(x) 

cannot be strictly decreasing in the  interval    (z,D(I)   - v]    because 

T'Cx) ak(D(l)  - ^a-VrlW-CDCD-v)*)  > 0   # 

x=D(l)-v 

If (11) does not hold, there may be relative minima for x e (z,D(I) - v) 

A sufficient condition for the existence of relative minima for 

x f, (z,D(l) - v)  is 

T'Cx) akz 
a-1      p  , -rF(v+z) -rl.       . 

- ^ (e '   - e       )   < 0   , 
x=z 

or 

< (e-rFCv+z) . ^-rl,   _ 

or 

(11a) I > - £n r 
-rF(v+z) "- -r) 

(Note  that whenever  (8)   holds,    T'tx)   < 0    for all    x e  (w,z]   , which 

Implies that   (11a)  holds.)    Let    x      be the solution to 
o 

-rFCv+w^x^M1'3  . -rF(v+x)   -rlx ae | —I   = (e       - e  ) '(f) 

which yields the smallest value of T(x)  over the interval  (z,D(I) - v] 
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Denote; 

T(xo)   = T(x) 
x=»x 

T(0)     = T(x) 
x-0 

However,    x      is not  the optimal value unless    T(x )   < T(x)   < T(0)   . 

Case   111(d):    Compare    T(x )     with    T(0)     for    x e   (z,D(I)  - v] 

For  this case, 

T(x  )  = kx e 
o o 

0    + p   J (D(y)  - v)e'rydy 

0 

+ P J (D(y)  - v - xo)e"rydy  , 
F(v+xo) 

and 

Hence: 

j. 

T(0)  = P   J     (D(y)  - v)e"rydy  . 

0 

T(x )  = T(0) + kx% 
o o 

-rF^1-^^ 
" Px, J e^dy 

F(v+x ) o 

- P 

F(v+x ) 

/       la. 
(D(y)  - v)e"rydy 

aa^^—^Mi 
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Except  for the range on    "x"  ,  this is the same result as we found  for 

Case II    where    x e   (w,D(I) - v]   ; whereas,   for this case    x e  (2,D(I)  - v]   . 

Accordingly we can write: 

T(xo)   < T(0)     if     I  >  F(v + xo) + i^n \^j        - in {i^j        -  ijj 

T(xo)  > T(0)     if    1  < F(v + w1-^^ + l(.n (f)        - .n ((f)        -  l)) . 

But if neither holds,  i.e., if 

F(V + v^'V) + ^ in 

1-    — 
tvl-a 

< I   <  F(v + x ) + - £n = or (vl-a 

then the role of    x      is uncertain and    T(x )    must be compared directly 
o o 

with T(0) . 

Remark: 

It is impossible for 1" (x) < 0 for all x c (w,z] and T'Cx) > 0 

for all x e (z,D(I) - v] because T'(x)  is continuous at x = z .  Further- 

more, inequalities (8) and (11) cannot hold simultaneously because if 

(8) 
-rF(v+z)   -rl a < e       - e 

and 

(ID  a (D(1) - v) 

l'ae-rF(vfw
1"a(D(I)-v)a) > (e-rF(v+z) _ e-rl) 

hold, this implies that 
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>(!)  - v) 

1-3 -rF(v+w1'a(D(I)-v)a)   >  n e > a 

which Is impossible. 

Case III Summary: 

Recall inequality  (8) ,   (8a),  (9),   (9a) ,   (11)  and the implications when 

each holds: 

(8):      I > r in ( e-rF(v+z) 
=> T^x)   < 0 V x e  (w,z]   , 

- a. 

!(8a):    I ? 7 An 
1    V-Üf-'I 

=> T'(x)   > 0 V x E  (w,z]   , 

^(9) - in I —;—\ < I  < - Hn ( P, j  > r        ( .   vl-al = r        I   -rF(v+z) 

T'(x) is uncertain V x e (w,z] , 

- a 
=> the sign of 

J(9a) : ~ ^n 

V - a(D(0)W- v) 

1    _\ < i < i Än l-a|     r 
1 

-rF(v+z)   /w - ^n 
T^x) < 0 and T'U) 

x-D(0)-v 
> 0 , 

x»z 

(11): a \D(I) - v) 

^rF^z) _ e-rl 

-rF(vfw1"a(D(I)-v)a) 
=> T^x) > 0 

Vx E (z,D(I) - v] . 

We conclude that; 

(a) If both (11) and (8a) hold, there are no relative minima anywhere 

in the interval  (0,D(I) - v] and hence x » 0 . 

^•aaaMMaaiaB 
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(b) If (11) and (9) held, there may exist relative minima in 

(D(O) -v, z], and only in this Interval. And, for x 

yielding the smallest value of T(x) in this interval: 

« 
x = x if Cl-a) (-ff < (l -e-rF(v + ^ ) . 

* 1 
x = 0 if I < -In = r 'it) 

1-a 

and T(x) must be compared directly with T(0) if neither of 

the above tests is satisfied. 

(c) If (9) holds but (ll) does not, there may be relative minima 

in either or both intervals: 

(D(O)-v, 7,], (z, D(l)-v).  And, if they exist in both 

intervals, T(0) must be compared with T(x ) and T(x). 

47 
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(d) If (11) and (9a) hold, then, there exist relative minima in 
A 

(D(0) - v,z]  and only  in this interval. And, for x yielding 

the smallest value of T(x)  in this interval: 

* 
x - x if  a - S' « - e'rF(^)) ' 

x* •= 0 if I < 7 fcn 
r V-(f) 

" U-a  ' 

and T(x) must be compared directly with T(0) if neither of 

the above tests is satisfied. 

(e) Relative minima exist exclusively in (z,D(I) - v)  only if 

T'(x) < 0 for some x . (Z.D(1) - v) and either T'(x) < 0 

for all x t (D(0) - v,z] or T'(x) > 0 for all x e (D(0) - v.z) . 

which requires that (11) does not hold and (8) or (8a) holds.  If 

these conditions hold, 

x      if    I > F(v + x )  + - m o or (t)   J 
and 

0    if    I  < F(V + w^V) + ~ in 

[■ - en 
But if 

F(V + w^VJ + ^n 

l1-^)  J 
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the roJc of x  is uncertain and T(x ) muat be compared directly 
o o 

with T(0) . 

(f) Otherwise, (11) does not hold but (9a) does hold and, relative 

minima may exist in either or both intervals,  (D(0) - v.z] , 

(z,D(I) - v)  and if they exist in both, T(0) must be compared 

with T(x ) and T(x) , by using the tests above or by direct 

comparison. 

Case IV: w < D(0) - v and  z > D(I) - v 

(See Figure 5).  This case is similar to Case III for the range 

x e (w,z] .  For Case IV we found that 

I  for x e [0,w] 

t (x) = 

(o for x e (w,D(I) - v] 

Accordingly,  most  of  the  required  analysis has been done  and we may summarize 

the  conclusions from Case III which apply to Case IV as  follows: 

a. T(x)    is strictly concave,  increasing  for  all    x    in the interval 

[O.w]   . 

b. T(x)    is strictly  concave  for all    x c   (0,D(0)  - v]    and    T" (x) 

Is continuous  at    x = D(0)   - v . 

c. Since there are no relative minima for    x e   (w,D(0)  - v]   , we 

need only consider  the range    x e   (D(0)  - v  , D(I)   - v]   ,  for which 

t*(x) = 0  . 

Case  IV(a);    x e   (D(0)  - v,D(I)  - v]   ;  t  (x)  = 0 

We can write, 

MM^MBMMA 
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and 

T(x) = kxa + p I     (D(y; - v - x)e"rydy , 

F(vfx) 

mi / \   i a-1  p t  -rF(v+x)   -rlx T'Cx) =» akx   - •*- (e       - e  ) 

Now at the end of the interval. 

T'U) 
x=D(I)-v 

ak(D(I) - v)3"1 > 0 

as in Case III, and T(x) cannot be decreasing throughout the entire 

interval  (D(0) - v,D(l) - v] . 

The existence of relative minima in this interval requires that 

T'Cx) < 0 for some x e (D(0) - v,D(I) - v] . As before, we look for 

conditions which rule out such a possibility, namely, conditions for which 

T'(x) > 0 for all x c (D(0) - v,D(I) - v] . As before we note that for 

x e (D(0) - v,D(I) - v] : 

1 > e-rF(vfx) ^ e-rI , 

and 

k(D(0) - v)3"1 > kx3"1 > k(D(I) - v)3"1 

Hence a lower bound on the derivative may be written as  follows: 

T' (x)  > ak(D(I)  - v)3"1 - -^ (1 - e~rI)   . 

The right side of this inequality is positive or zero whenever 



a(D(I)  - v)3"^1"3 >  (1 - e"rI)   , 
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or as a condition on    I   : 

(12) , < i £n / 1——X 

Hence we conclude that 

I < - fcn 
- r 

-*( 

I  ^ S>T,(X) ^ 
Da"- v)   /) 

0  Vx e (D(0) - v,D(I) - v] 

Suppose  (12)  holds.    Then, since 

(D(0)   - v)3"1 >  (D(I)  - v)3"1 

we can write 

T'W 
x=u(0)-v 

ak(D(0)  - v) 
a-1     £ 

(1 - e-rI) 

which is strictly positive.     But    T(x)     is concave for all    x e  (w,D(0)   - v]   ; 

hence, whenever  (12)   holds,    T(x)    is strictly  increasing  for all 

x e   (w,D(0)  - v]   .     Since    T(x)    is also concave increasing for all 

x e   (0,w]   ,  it follows  that whenever  (12) holds,    T(x)    is nondecreasing 

over the entire interval     [0,D(I)  - v]   .    We conclude that: 

fl i - X-n 
- r 

\D(I)   - v)     j 

=>  x    = 0   , 

1 - a 

and when this inequality does not hold, there may exist relative minima in 

the open interval x e (D(0) - v,D(I) - v) .  A sufficient condition for the 

existence of relative minima in (D(0) - v,D(I) - v]  is T'(x) < 0 
x«D(0)-v 
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or 

.(HifiLr-Jt)' -» -rl « I - • 

or 

(12a) 

V"Uf^)     / 
Ui    x   b« the tolution to 

1-« .g)1- . (.-^<^>  - .■rI) 

which yl.ld. the ...llc.t v.lu. of   T(x)    over th. op.n Interv.l 

(D(0) - v.U(I)  - v)   .    But    i    I. not  th. optlm.l v.lu. unlc.    T(x)   < T(0) 

where 

T(i) - T(x)      . 
X"X 

T(0) - T(x) 
x-0 

Denote: 

t - T(x) - T(0) 

F(vfx) 

A - id* - f x(e-rF(vf;;) - e"'1) " P   j W - V)e'rydy ' 

The integrand 1. bounded as follow.: 
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0 « y <  F(v ♦ x)   , 

Ü(0)  * l)(y)  « v ♦ i  , 

D(0)  - v * l)(y) - v < u . 

Substituting tho   low#r bound, gives: 

A   < ki1 - i» ;(r-rf(v^)  - .-rI) ♦ f (U(0)  - v)(.-r,'(vf',)  - I)   . 

A« In Case 111, the right nlde of ChU Inequilltv i* negative whenever 
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(1 - a)kx* < J (J)(0) - v)(l - e 
■rr(v4x) 

) . 

or 

(10.) (1 - .>(!)' < (1 - e-rr(v+x)) . 

Hence-, an  in Case III: 

(1 - «)w1'0ia < (D(0) - v)(l - e'rF(v+x)) O T(x) < T(0) 

Substituting x , the upper bound, we have: 

,/«  P */ -rF(v+x)   -rK  p ',.        -rF(vfx). 
A > kx - *■ x(e       - e  ) - ^ x(l - e      ) , 

.--t - (r" - .-">] • 
Again as in Case III, the right side of this inequality is positive whenever: 

erI< 

-(e) 
*\a-l 

or 

MM* 
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(10b) '■■"M- 
hence: 

'I < - tn ■ r - r -> T(x)  > T(0)   , 

the Bam« •• we found for Cose III.    If neither (10a) nor (10b) holds, a 

direct conperleon of   T(x)    with   T(0)    must be made. 

Cane IV;    Summary 

(a) x c  [O.w]   . 

t (x) ■ I and T(x) is concave increasing for all 

x c (0,w] . 

(b) x c (w.D(I) - v] . 

^ T'Cx) > 0  V x e (w,D(I) - v] 

v ■ aM^ 
.l-a 

and, hence, x ■ 0 . 

But when this Inequality does not hold, there may exist 

relative minima for x e (D(0) - v,D(I) - v) , and x yields the 

smallest value of T(x) In this interval. But x may not be 

the optimal value, unless T(x) < T(0) . And: 

* 
x    ■ x 

* 
x    ■ 0 

i    if    (1 - a)^)0 < (1 - e-^^) 

if    I  < - Hn I ~—r\ 

■r v-(r) 
and if neither of these Inequalities hold,  then    T(x)    must be 

compared directly with    T(0)   . 
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t«»wjj_w  >   (U(0   -  v)   . 

I   (x)  -  I   ,  x    - 0  . 

£Ä?£.JiJ„JlCPi„-JLJJ* * Jli\LzJi 

* 
x    - Oi 

lt*(x)  -  I 

it    I  < 1 «n L-f^^)      /       w       \1"a    -rF(v+w1'',(I)(I)-v)a)]   . 

Let    T(x )    be the binal'esc value of    T(x)    where    x      satisfies 
o o 

.   a-1 -rF(v+w""axa)      P  , -rF(v+x)        -rK akx      c ■ r  (e - e       )   . 

Let 

U(xo,v,r,w,a) ^+v+-rHv)la-«"ter-')] 

.(x0.v,r.w..) - F{„ + w'-V) + i[t„ (^)1 a - .„ ((f)1  a - l)]  . 

Then: 

* 
x    - x 

0 

['*<«„) ■ H"+"'"'it 
if    I  > U(x   ,v,r,w,a) 

x    - 0 

if    I  < L{x^,v,r,w,a) 

!t"(x)  -  I * 
* 0 o- 

and  if    L(x  ,v,r,w,a)   <  I   <  U(y   ,v,r,w,a)   ,  a direct comparison is  required, 
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CM« Uli    w * DW - v-»M-f-LJ^il^j: • 

Mcalli 

(8) I * r ln (^-rF^i) . J 

-■■■(r^r) 

I      w  N1-«  / g-rFQH-z) . e-rl  \ 

llD(I) - v/   - ^^^(DCD-v)8) ) ' 
(11)       .. . ,   >. r— -1 • Note: (9a) -> (9). 

If (11) and (8a) hold, then x ■ 0 because T(x)  is nondecreaslng 

throughout the entire interval. 

If (11) and (9) hold there are no relative minima in (z,D(I) - v] but 

there may be relative minima in  (D(0) - vtz] ; and, if there are: 

x « x 

/(x) - 0 

if (1 - a,^ < (1 - e-"'^) . 

{x* - 0} "■:i"(:ir)- 
and T(x) must be compared with T(0) if neither of these tests apply, 

in which case, 
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* 
x ■ x 

t*(x) - 0 

If T(x) < T(0) . 

(x* - 0) If T(x) > T(0) . 

If (11) does not hold but (8) or (8a) holds, thor« are no ralatlv« 

minim« in (v.i] but Cher« may be relative minim« In U,D(l)-v); and if 

there are: 

* 
x ■ x 

o 

[tA(xo) - F(v * w^V)] 
if I > U(x0,v,r,w,a) , 

(x - 0} if I < L(xo,v,r,w,a) , 

but if    L(x  ,v,r,w,a)  < I < U(x .v.r.w^)   , a direct comparison must be 

made and 

* 
x    • x 

o 

[t*(xo) - F(V + w^V)] 
If    T(xo)   < T(0)   , 

{x* - 0}    if    T(x )   > T(0)   . 

If (9) holds but not (11) there may be relative minima in both intervals, 

(D(0) - v,z]    and    (2,0(1) - v]    and these must be compared with    T(0)  .    And, 

[t*(xo)  - F(V + w^V)) (T(XO)   < T(x) 

x    - x ) lT(x )   < T(0)    and] o Ito 
if 
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x    ■ x 

• *. 
t (x) ■ 0 

If 

and 

(x ■ 0) if 

T(x)  < T(0) and 

T(x) < T(x) 

T(O) <.T(xA) and o 

T(0)  <.T(x) 

CaBc IV:    W < D(0)-v and z * D(l)-v. 

Recal 1: 

(12) 

^■'"(^•tefe)1" 

If (12) holds, there are no relative minima In the Interval 
it 

(w, D(l)-v] and x   »0.    Otherwise, there may be relative 

minima in the open interval,  (v,D(l)-v).    But, x, the 

value of x,  for which T(x) is a minimum in this Interval, 

is not the optimal value unless T(x) < T(0). 

Then: 

»    a 
rF(v + x) x   =xif (i.a)(|)   <  (i.e-rF(v + x)) 

x=0ifl<      ±   Jbi a     r 

-(;) 

a-1 

and If neither of these tests are met, a direct comparison 
A 

of T(x) with T{0)  is required. 
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Remarka on unlquencon of relative mtnima x «nd x 
 0 

In our analysis of Casei II, III and IV ve found that whenever 

relative minima exist on the Interior of x c (v,D(l) - v), they are 

for values of x which «atlefy T'  (x) ■ 0, or: 

r(x) - akx*-Vrt#(x) -   P(,-^^x) . ^rlj . 0 

r 

Accordingly, denote S(x) for x c (v,D(l) - v] as follows: 

8(x) - akx«1-1 e-rtt(x) -   i (e-rP(v+x) - e-rI). 

where: 

t#(x) 

F(v + w^V) for x c (w,D(l) - v] for Case II, 

F(v + w^V) for x c U.Dd) - v) for Case III, 

0 for x c (D(0) - v,z] for Case III, \   . 

0 for x c (D(0) - v,l] for Case IV 

Denote: 

H(x) = akxa-1e-rt,,(x). 

C(x) « I  (e-rF(v+x) - e-rI) . 
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Then: 

and 

8(x) - H(x) - C(x) , 

S'Cx) - H'W  - C'Cx) , 

S'^x) - H'^x) - C'^x) . 

Then: 

H'(x) - a(a - l)kX
a-Vrt*(x) - rakxa-Xe-rt*(x)(^ t*(x)) . 

And 

H"(x) - a(a - l)(a - 2)kxa'3e"rt (x) + (1 - a)rakxa"2e"rt (x)[^ t*(x)] 

+ r
2akxa-V"*(x>[i c*(x)]2 - rakx-V"*^^ t*(x)l . 

2 
d   A d  * 

which is positive whenever —j t (x) ^8 negative or zero because -r- t (x) 
dx x 

is nonnegative. (H'^x) > 0 for t (x) - 0) . Now: 

G'(x) - pe-rF(vfx) ^ F(v + x) > 0 . 

And: 

G"(x) - pe-rF(vfx)/-r[£ F(v + x)]2 + -4 F(v + x)j . 

d2 
which is nonpositive whenever —r F(v + x) is nonpositive, which in turn 

implies -G"(x) is positive. 
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H«nc« SM(x) if poilclvo and 8(x) if ■crlctly convex whenever both 

d2 d2 * —r F(v + x) and —r t (x) are nonpoaitlve. One claaa of demand functions 
dxz dx' 

for which these conditions hold is D(y) convex because P(x) is concave. 

For such a class, there are at moat  two seros of S(x) . 

For example, suppose v - 0 , D(y) - ey and w ■ 1 . Then Case II 

applies and t (x) - F(v + w axa) , Restrict x c (w,D(I)] ■> 1 < x < e1 . 

Then 

tn  D(y) - y 

F(D(y)) - F(ey) - tn D(y) - y , 

F(v + x) ■ In (v + x) ■ In .x , 

^ F(v + x) - - , 

t (x) - F(x ) - a tn x , 

d .*/ ^  a   d2 .*/ \    "2 
d^ ' (X) " x ' 72 t (x) " -ax dx 

2 
-~ F(v + x) - -x"2 < 0 . 
dxZ 

Further: 

2 a-1 -rt*(x)/a'2 + r ax  e     ' — 

H"(x) - ka(a - l)(a - 2)xa-3e-rt (x) + (1 - a^akx^V^ (x)(f) 

>/a\2 J        «-1 -'^(x), -2. f-l + rax  e   N ' (ax ) . 

Hence HM(x) > 0 . Now: 

G"(x)-pe-r,lW.r(-i).x-2j<0.. 

mam 
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Hence    -G"(x)   > Ü   ,  S"(x)  » H"(x)  - (•"'»   ^  u    and    S(x)     is convex 

with at most  two zeros. 

For Case II and IV when    t   (x)  - 0    for all     x t   (w,z)   : 

H(x) 
xf.(w,z) 

akx3"1 > 0   , 

and    H(x)    is convex,  decreasing.    Hence these remarks apply to all cases, 

except  Case 1,   for    x  e   (w,n(l)  - vj   . 
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An Algorithm for Finding an Optimal Expansion Policy 

1. Define whether Case I, II, III, or IV applies as follow»: 

Compute w -(D(l)-v).    If non-negative, Case I applies. 

Otherwise, compute w -(D(O)-v).    If non-negative. Case II 

applies.    Otherwise, compute D(l)-v-z.    If non-negative. 

Case III applies; otherwise Case IV applies.    If Case I 

applies, x   = 0.    For Cases II,  III, IV, go to stops 2,3,^ 

respectively. 

2. (Case II).    Compute: 

vl-a     -rF(v+w1"a(l>(l)-v)a) ,    -rl    -rF(v+w) a/__w_\ e + e     -e . 
(DTIFT) 

If non-negative x    = 0 because T(x) has no relative minir.a 

exist in the interior of (0,D(l)-v]. 

Otherwise go to step 5- 

3.    Case III.  Compute A    and A    where: 
1 2 

A    _ ii-a /   -rF(v+z)        -rl A=a/w       \ -    /   e -e 

and 

Y *  V" ywht) 1        ' ",U:' ' '   e-rF(v«1-B(D(I)-,)')    '   ' 

i   - a - ii\''   (l-e"rI) 
(f) 
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Remark: 

A  > 0  B>  inequality (11} holds, and 

A  > 0  »>  inequality (9) holds »> (10) does not hold. 
2 B 

• / \ 
If   A  > 0 and  A  > 0. x B 0 because T(x) has no relative 

1 B 2 = 

minima in (0, D(l)-v]. 

A^ < 0 and A  > 0, there may he relative rainime, hut only in 

(z, D(l)-v); hence go to step 5. 

If 

If A      >• 0 and    A      < 0, there may be relative minima, but only in 
1    a 2 

(D(0)-V,   Z]; hence, go to step 6. 

If A      < 0 and    A      < 0, there may be relative minima in both intervals 
1 2 

(D(0)-v,z]  and (z, D(lO-v); hence,  go to step ?• 

k.    Case IV.     Compute 

If non-negative, x   = 0 because T(x) has no local minima in the 

interior of (0,D(l)-v].    Otherwise go to step 6. 

5.     (Cases  II and III).    Compute all solutions to: 

af - ,a'V     -rFtv^-V)^ (e-rF(v+x)- e'rl) 
/        v   a--L / 

GO ( e 

where:  x e(w,D(l) - v)  for Case II and x e  (z, D(l)-v)  for Case III. 

Newton's Method or some other appropriate method of numerical analysis 

may be employed.    If D(y)  is convex, there are at most two solutions. 
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Denoting x   as the    best    solution, compute 

I - L(x . v, r, w, a) where 

L(x ,v,r,w,a) = F(v ■•• x ) +   -   ^n o or 

-ft) 

U-a) 

If the result is positive, x = x . Otherwise, compute 

I - U(x .v,r,w,a) 
o 

where: 

U(x ,v,r,w,a) = F(v + w1"axa) +   -   In o or 

<l) 
TUI) 

1 -    T 

If this result is negative or zero, x =0. Otherwise, 

compute T(x ) - T(0). If this result is negative, x = 0; 

* 
otherwise x =0. 

6.  (Cases III and IV). Compute all solutions to 

i-rF(v+x)   -rl 
- e 4) i-a = *-11 

where x e(D(0)-v, z]  for Case III and x e (D(0)~v, D(l)-v) 

for Case IV. 

If D(y) is convex, there are at most two solutions. Denoting 

x as the best solution, compute 

(l-a) (f)6 - (l.e-rF(v+x)). 

If the result is negative, x   = x.    Otherwise,  compute 

1 --   in r 
!-(*) 

l-a 

M«k. 
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If the result is non-negative, x    = 0.    Otherwise,  compute 

T(x) - T(0).    If the result is negative, x   = x, otherwise 
.« 
x    = 0. 

7.  (Case III: both x and xo may exist.)    Compute all solutions 

to 

a-1 1-a a* 
(Z-V'1    e-rFCv+w^V) = (e-rF(v+x) _ ^rl^ 

where x e  (z, D(l)-v), and x    is the best solution.    Compute 

all solutions to 

a-1 -rF(v+x) _ e-rl. (x \ ^     / -rnv+x;   -■!■■>• \ 
w)    = (e      -e  ) . 

where x e (D(0)-v, z], and x as the best solution. 

T(xJ - T(0), and T(x) - T(0). 

Compute 

Then 
» 

x   =xo 
if 

T(x )  < T(0)    and 
o 

T(x )   < T(x) 
0 

<M                      A 
T(x)    < T(0)    and 

x"   = X if 
T(x)    < T(xo) 

x = 0 otherwise, 
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CHAPTER IV 

AN ALGORITHM  FOR SEQUENTIAL CAPACITY  EXPANSIONS 

Introduction 

In this chapter wc consider a sequence of capacity expansions over time. 

The algorithm of Chapter III for a single expansion is too cumbersome to use 

for sequential expansions.  Accordingly, we present an algorithm for digital 

computers in which demand and capacity take on discrete values. 

Our approach is  to treat an n-expanslon problem of    2n    decision 

variables as- an n-stage decision process.    Two types of problems are 

considered.    The first, Type I, does not permit a shortage of capacity after 

the last expansion while a Type II problem does.    We show that solving a 

Type II problem requires that a Type I problem also be solved. 

Let    x.    denote the size of the jth capacity expansion,    t.    the time 
J «J 

at which it occurs and v  the capacity before it occurs. Restrict the 

times of capacity expansions as follows: 

0 < t. < t, < ... < t <I. ■1"2«    »n« 

Type I Problems 

Recall that    t  (x)    for a single expansion. Cases I through IV, 

Chapter III can be summarized as follows  (see Figures 2 through 5): 

!I    if    x e  [0,w] 

0    if    x e (w,z)    and   w + v < D(0)] 

F(v + w      x )    otherwise 

where    I    is the length of the planning interval and    t e [0,1]   . 

Suppose we restrict    x    such that    x - D(I)  - v    and allow    (D(I)  - v) 

to vary.    This forces the last term of    T(x)    to vanish, and 

MM 
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(13a) p    |    max (D(y)  - v - x,0)e~rydy H 0 . 

Let    Ci')     denote the single expansion cost function under  this restriction. 

To avoid ambiguity,  let the last expansion for a j-stage problem satisfy: 

x3 - °<« " 'j   • 

where 

and 

D(l)   e   [D(0),D(I)] 

Vj   t  [vo,D(I)]   . 

Notejwe are also defining v. , to be a parameter, and v  to be the initial 

capacity at time zero. 

Remark; 

* 
Note that by our restriction on x , t (x) < F(v + x) .  Hence, the 

configuration implied by our definition of Type I problems is shown below 

(for v1  < D(0)) . 

Demand 
Capacity 

Time 

FIGURE 7 
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In particular, we can write without loss of generality that 

0 < t1(x1)   < F^ + x^   < t2(x2)   < F(v2 + x2)  < ...   < I  . 

This will permit us to simplify the cost  functions.    Note  also that we can 

define the jth stage unambiguously as beginning at 

v, « FCv. + x-  + ... + x    .)    and ending    v    . ■ FCv. + x. + ... + x )   . 

Restricting x , so that (13a) holds, the cost function for the Type I 

single stage problem is 

-rt-Cx )     r 
C1(x1,v1) - kxje       

+ P J     max  <D<y) " v1,0)e"
rydy , 

where: 

x1 - (D(l) - v1) , 

and 

lt2(x2) if x^^ e [0,w] 

t1(x1) » <0     If x1 e (w.z)  and w + v, < D(0)^ . 

iF(v. +w  x. ) otherwise 

Note that t2(x2) < I with equality always holding for a one-stage problem. 

The cost function for the first two stages of a Type I problem Is 

given by the sum: 

mm^^^am 
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* t2(x2) 

+ ^e""2^ + P    j max(D(y)-v2.0)e-^dy 

where 

x1 + x2 » D(i)  - Vj^  , 

v2 " Vl + Xl " D(i)  " X2  ' 

t3(x3)     if    x2 e [0,w] 

.2Cx2) = (t^Cx^     if    x2 e  (w.z)    and   w + v2  < D(0))   . 

[F(V2 + w1'^^)    otherwise 

and     t*(x ) - I    if this be only a two-stage problem.    This can be simplified 

to obtL'synunetry of definition.    Write    C^.v,)     in an equivalent  form: 

:i(Xi.Vl) - ^e'"*^ + P   f1     -x (D(y) -vJ.0)e^dy 

S&J 
+ p     f max  (D(y)  -v^0)e"rydy 

F^) 

Examine the three cases for ^(x^ . 

Case 1: 

t ̂(x^ - 0 -> F^) - 0 . 
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Then    C.Cx-.v.)    may be written in equivalent form as 

* t*(x.) 

^^I'V  " kxle +P (D(y) -v1,0)e"rydy 
F(v1) 

Case 2: 

t*^)  = F^ + vMc*) > F^) 

Now, for the integrand of the first integral! 

0 < y < FO^) , 

D(0) < D(y) < v1, 

or D(y) - v. < 0 . 1 

Hence max (D(y) - v.,0) «0 . 

And, for the second integrand 

F<vi> ^ y i p^i + w^xj) . 

v1 < D(y) , 

or 

0 < D(y) - v1 . 

Hence max (D(y) - v ,0) « D(y) - v. . 

Again (^(x^v,) may be written as above in Case 1. 

Case 3; 

t1(x1) - t2(x2) . 

71 
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Again as before,   for    y e  [O.FCvJ]   , max  (D(y) - v^O) - 0  , and for 

y c |F(v1),t2(x2)J    , max  (D(y)  - v1,0)  - D(y)  - Vj^  . 

Hence without loss of generality we can write 

-rMxJ i 
-rt u,; r 

(14)      C1(x1.v1) - kx^e + P   J Wy> " vi)e     dy 

FCv^ 

where    F(v..) ■ 0    whenever    v.   < D(0)   . 

Remark: 

Case 3,  tiCx-i) a: ^(x«)  is a degenerate case but presents no real 

difficulty. Whenever two-stages "collapse" into one stage, the cost function 

for a single stage is less than for two stages, for expansions at the same 

point in time. As an example, for v2 ^ vi + xi and tl * t2 : 

C(x1,v1) + C(x2,v1 + x^ > Cix1 + *2'vl) 

because 

(kx* + kx^j > kCx. + x«)' 

for 0 < a < 1 . 

Now, consider the second stage cost function, and, as before examine 

the last term.  If  t.Cx.) - ti^i)  the last term vanishes.  If 

t9(x5) ■ t-(x_)  the case is degenerate and three stages have collapsed into 

two stages.  However, if t2(x2) ■ Ffv« + w  x« j then the arguements simil 

to those leading to (1A) can be made. Write the integral as follows: 

ar 

MM 
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t2(x2) Frvj 

P    J^ "»ax  (D(y) - v2t0U-*ydy . p   J nax  (D(y) _ V2>0)e-rydy 

t*(K2) 

+ P   J max  (D(y) - v2,0)e"rydy  . 
F(v2) 

where    v2 - v;L + x1    and    F(v2) - F(v1 + x^   .    Then,  the first integral 

always vanishes because 

t1(x1)   < y < F^ + x1) 

and 

D(y) < v1 + x1 , 

or 

D(y)  - v1 - x    < 0 

Hence 

max  (D(y)  - v2,0) - 0  . 

Also,   for the second integral, 

F(v2) - F^ + Xj)  < y < t2(x2)   , 

or 

vi + xi - D(y) 
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Hence: 

max (l)(y) - v2.0) - D(y) - v2 . 

Therefore, the cost function for the «econd stngc can be written 

*, ,     t2(x2) -rt5(xj     r 
C2(x2.v2) - kxje       

+ P J     <D(y) " v2)e'"rydy , 

F(v2) 

* 
where    t.Cx.)    Is defined as before.    In general, then, we can write for the 

Jth stage. 

(15)      C 
-rt.(x.) }    J 

^(XJ.VJ) - kxje      J    J    + p     I (D(y)  - v^e'^dy  , 

f(vj 

where:    v^ - v1 + x1 +  ... + % ^ , t»(x ) = 0  , and 

itJ+l(xJ+l)    if    XJ c l0,wl 

t*-l(xj-l)    lf   xj c (w,z)    and    w + vj  * DW 
IFIV. + W      X  J    otherwise 

Computational Procedure, Type I Problems 

1.    Divide the capacity and demand interval    [0,D(I)]    into   M    subintervals. 

For illustrative purposes only, assume these subintervals are of uniform 

size, say    A > 0  .     Consider    v.   , the initial capacity to be a parameter 

Instead of a fixed value, with    v.   e   [v ,D(I)]    where    v      and    D(I) 

are fixed values.     Restrict positive values of .x.   , D(*)   , v,    to 

multiples of    A  .     Hence ,  for a J-stage problem, 
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and 

v + x = D(l) e {0,A,2A, ...,MA} 
J   J 

v  c {0,A,2A, ..., MA} 
J 

(Note: except for linear demand, F(') is not restricted to multiples 

of some value.) 

2. Choose a value for D(i) and a value for v.. 

3. Compute t*(x ) from (13). 

1». Compute C.U ,v ) from (Ik). 

5. Repeat Steps 2,3,and It for all D(i) e [vo,D(l)] and all v c[v0,D(l)]. 

6. Store the results in Table I.  The subscript J is used because Table I 

is used for any succeeding single stage cost function. 

CjtDUKvj) J=l,2,...,n 
i i                                1 

P^SDU) 
V1     ^v 

Vo v0 + A v0+2A p(l)-2A D(I)-A D(I) 

| Vo « 

v0+A 

Vo+2A «« 

D(I)  -  2A 

D(I)  - A 

D(I) j 

TABLE I 

(Note: diagonal entries are zero and all entries below the diagonal 

are also zero). 

mm 
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1. Nov, cons5.der a tvo stage problem. The first stage end conditions 

are the second stage initiaL conditions. Ther efore, demand equals 

capacity at the beginni ng of the second stage, except when x
1 

= 0 or 

x
1 

= D(I)-v 0 , in which cas e there is no s econd stage. Hence both 

first and s econd stage cost functions are found in Table I. For 

example, suppose x
1
= 26>v ar.d v

1 
= v0 for the firs t stage, ann ; 

x2 = D(I) - 26 Yo , = v0 + 26 for the second stage. Then, the 2 

entry i~ Table I for the second stage cost function corresponds to 

column D(I) and row (v0 + 26). For this example, the asterisk in Table I 

is for the first stage and the double asterisk for the second stage. 

8. Restrict the sum of ~ and x2 such that 

~l + x 2 = [ D(I) - v 0 ). 

Let v
1 

= v0 • Then, since 

v2 =Yo+ xl, 

Table I can be used to compute by enumeration: 

C~(D(I)) = 

where C~(D(I)) is the optimal solution for a one stage pr oblem. 

This yields the opti mal policy for a capacity expansion of size 

D(I)-v0 done in n=2 stages. But if expansion in two stages is not 

* as good as expansion in one stage, x2 = 0. Hence, this also yields 

* the best value for n , the optimal number of stages. 

9. Nov, consider a three stage problem, with a third stage initial 

capacity of v
3

, where: 

V3 = Vo + X + X • 1 2 
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For a given value of v_ , the optimal total cost function is given 

by the sum of the third stage cost function plus an optimal two 

stage cost function, i.e., 

C3(D(l).v3) + C2(D(I) -v3). 

We wish to minimize this sum by choosing the best value for V-. 

Hence,  compute by enumeration, C2(D(l) - v ) for all v    c  [v0, D(l)] 

and store in Table II. 

V3 
C*(D(l)-v3] 

0 

A 
* • 
* 

D(I) 

TABLE II 

10. Now, use Table I and II to compute by enumeration: 

C*(D(I)) =   minimum    { C-(D(l),vJ + C*(D(l) -v J } . 
3       v3 t  [v0.D(l)]   3     3    2      3 

« 
This yields the optimal policy, including n , for an n=3 stage 

problem and If expansion in three stages is not as' good as two stages, 

x_ = 0.  (.If expansion in three stages is not as good as one stage, 

»   » 
x3 = x2 = 0.) 

riHWi 



78 

11. Repeat step 9 and 10, adding a fourth stage and construct a Table III 

of values for C, (D(I)-V. ), using Tables I and II. Discard Table II 

if desired. 
when the previous table is repeated. If this 12. Terminate the process 

* 
happens for n=k+l, then n = k. 

Remark: 

We can now write the general recursion relation: 

(20)   C* "(Dd)) =  minimum    cV^Dd) -vj + ^(DdhvJ  . 
n        v e[v0,D(l)] ne 

Type II Problems 

Consider now a Type II problem in which the shortage after the 

last expansion is permitted.    Denote the shortage after the nth 

capacity expansion as: 

I, 

S(vn) = P    J        (D(y)  - vn )e-rydy, 

F(v ) n 

This function is the no expansion case whenever v   = v0  . 

Denote    T-C*)    as a two stage Type II cost function.    For a given 

value of v2, the two stage cost function may be written as the sum of 

the shortage cost plus an optimal n =2 stage Type I cost function: 

T2(v2) = C*(  v2) + S(v2)     . 
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We wish to minimize this by choosing the best value for v«. Hence, we 

define 

« I  « 
T-(D(I)) =  minimum    J C. (vj + S(vJ 
2        v0 c [v0.D(l)]( 

2  2     2 

as the optimal cost function for a two stage, Type II capacity expansion 

problem.    Similarly,  for an n-stage problem we have: 

T*(D(I)) =       minimum ) C*    (v ) + S(v )(. 
vn e  [v0,D(l)]|     n      n M 

The Type II computational procedure parallels the Type I procedure 

after a table of values for S{v.) has been computed for all v.  c [v0,D(l)]. 

(Note that the no expansion policy is not found by Type I computations 

but it is found by Type II computations.) 

mm* 
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CHAPTER V 

A STATIONARY POLICY FOR A LINEAR DEMAND FUNCTION 

Introduction 

In this chapter we use our previous results for a finite sequence of 

capacity expansions and argue an asymptotic stationary model as a limiting 

case for a linear demand function, with a planning interval of infinite 

length and an infinite number of stages. Manne [9] who first investigated 

this problem uses the notion of "regeneration points" to derive a cost function. 

Consider a sequential capacity expansion problem in which the demand 

function is linear and the initial demand as well as initial capacity are 

zero. Let the rate of growth of demand be "b" . Then 

D(y) = by and D(0) « v = 0 

F(x) = b * . 

From Equation (16), Chapter IV we know that for v ■ D(0) - 0 , the optimal 

time of expansion for the nth stage, n = 1,2, ..., N , reduces to two cases; 

tn(Xn) n n 

, * 
t .i.-i(x J-I) lf 0 < x < w 1 n+1 n+1      « n = s 

Flv + W  x I otherwise 
k \ n      n/ 

where 

n-1 
v «= v, + y x. . 
n   1  ini 1=0 
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Also from Chapter IV we know the configuration of the optimal expansion 

policy is    F(x. +x0+...+x    ,)<t(x)< FCx. + ... + x )    because 1        Z n-l    ■    n    n    ■        i n 

v.  B 0 .    Hence we may write the cost function for an n-stage Type I problem 

as follows.    Let:    x    =  t    = 0    and    t   ., ■ I   .    For brevity denote: o        o n+1 ' 

Then: 

C    - C  (x-.v.) + C„(x  ,v9) + ... + C  (x  ,v )   . n        ill ill nnn 

n -rt n       /• 
C   - K    I    xje      1 + p    I       I (by - v^e'^dy . 

1-1 i-1   ^(Vi) 

Define a stationary policy as one in which all capacity expansions are of 

equal magnitude.  This is equivalent to specifying that the time intervals 

between expansions are equal for an optimal policy. To see this consider 

that the time interval between the nth and n + 1th expansions, is: 

* - < - ^-^nH^ ^-X) ■ 
And; 

xl " x2 " ' *' E xn " Xn+1 ' x "* F' Z. x-i I " nFW • '(I ^) ■ - 
Hence 

mm 
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n+1        n 
F(nx + w^V) 

1,       ,     1-a a. 
D 

1,     ,     1-a a. 
= T-(X + w      x ) 

F((n - l)x + w^V) 

--((n - l)x + w      x ) 
D 

and  the time intervals between successive expansions  is constant.     In particular: 

*    N       1    1-a a t1(x)  " ^ w      x 

t*(x)  » F(x) + t*(x) 

and 

ti(x)  =   (i - l)F(x) + t^x)   ; i - 1,2 n 

The asymptotic cost function as n •*■ •*>    and I -* » is denoted Co 

and using the preceding we may write it as follows. 

oo —r t * 
c - y kxa

e   
i + 

00 «» I p j (by - ix)e"rydy> . 

Note: 

. [e-
r<1F(«>+tl'] . [e-rFCx)]1/"! -rti+1      1   -r(iF(x)+t 

hence 

i-0 

-rt. 
kx e 

1 - e 
-rF(x) 



dg"       KBBBBff 

83 

I-rF(x)I e 1 < 1 for x > 0. Next examine the second term, the 

integral,  in C    . 
00 

iP(x)+t1 iF(x)+t, 

P 

iPCx)*^ iFUHt.. 

I bye'^dy - pix I e~^dy 

lP(x) iF(x) 

= E|   e-riF(x) ||-b + briF(x) -rix-j+ ^rti (rix _ b _ brip(x) . brtj |   , 

To compare this result directly with the asymptotic stationary model of 

Manne [9], we normalize the time scale, letting b = 1 and,  therefore, 

F(x) = x.    Then the above expression becomes 

P       -rix 
T6 
r 

ri-e-rtl (1 + rt^l    . 

Then 

a    -rti -n 1       -rt. 
C    - 

1 - e r   \ /i=o 

Again, noting that    I e       I < 1 for x > 0 ,   we can write 

i: [e-]1 
i=0 ,        -rx 1 - e 

Hence 

C {^][^^2(u-e-%.rV)]. 
This result agrees with Manne [9].  It can be simplified by noting that 

mmtm 
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*, .  rk a 
t.W m — * 
1     P 

or 

£ t*M -  kxa . r 1 

Substituting this into the above yields a cost function in one variable, x 

"- ■ t. ht*" 
This is  the same result as  that found by Erlenkotter in Chapter  11 of 

Manne [lO].   There  the derivation was based on  the notion of "regeneration 

points" rather  than directly arguing the case as an asymptotic result of a 

sequential capacity expansion model. 

In the chapter which follows, we will use the algorithm of Chapter IV 

to compare a finite planning interval policy with a stationary policy. 

Remarks; 

There are distinations between assuming an infinite planning horizon and 

a finite planning horizon. One reason Manne suggests an infinite horizon is 

that he doubts that geometric growth rates which characterize some industries 

today "can be extrapolated to the indefinite future." Another reason he 

gives is that his cost function is mathematically tractable. Finally, his 

model sheds light on the question of optimal policies for standard sized 

plants.    However, the chances of correctly forecasting a demand function 

far  into the future are very small indeed, hence a policy based on such 

deterministic forecasts is not truly optimal. On the other hand, a policy 

based solely on short term forecasts may not be truly optimal either. 

Although it may be possible to assign some probabilities to one's 

demand forecasts and attempt to minimize an expected present value function. 
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It is likely to prove very cumbersome to use. In practice, planners are 

more likely to use a deterministic model and treat demand forecasts in a 

parametric fashion. 

There usually is enough time between expansions to permit forecasts to 

be up-dated  and new determinations made of optimal policies regardless of 

which model is used. Whatever the length at the planning horizon, if demand 

is not a linear function, a stationary policy may be a poor approximation to 

reality. For this last reason, if for no other, we feel our approach yields 

results which may be of practical Importance. 

. 
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CHAI'TLR VI 

SOME COMPUTATIONAL RESULTS 

Introduction 

The discrete dynamic programming algorithm lor Type I problems was 

coded in Fortran IV for the Univac 1100 computer. Computations were made 

for seven demand functions. 

The first set of demand functions, shown in Figure 8 , were chosen to 

facllitolf comparing a stationary policy with a multi-stage finite planning 

interval policy. 

The second set of demand functions, shown in Figure 16, were chosen to 

test the sensitivity of x. , the optimal value for the first stage capacity 

expansion, to changes in demand forecast, using a family of demand functions 

(all of which coincide during the first third of the planning interval). 

The following were chosen so as to simplify comparisons with the asymptotic 

case: 

a-.5 ,k»8 ,p"l,r-0.1 , 1-60. 

All computations employed the same length planning Interval, namely 60 units. 

The units of measure for the planning interval are arbitrary. The demand 

functions for Cases A, B, C were: linear, strictly concave and strictly convex, 

with D(0) - 0 and D(I) - 60 in all three cases see Figure 8. 
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Demand 

10- 

Tlme 
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Figure 9 shows the present value of total costs as a function of 

the planning interval. The value of n  changes at 20, 36, and 51 periods 

Run A;  Linear Demand Function 

Present Value of 
Total Cost ($) 

h 46.18 

A5 

AO A 

35 H 

30 H 

25 H 

10 
T 
15 

20 36 

 1 
30 

Planning Interval, I 

40 

51 
_1- 

50 60 

FIGURE 9 
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Figure 10 Is the lower portion of Figure 9 and is drawn to the same 

scale.  It shows a comparison of a no-expansion policy with the policy for 

n« 1 and n - 2 expansions.  For a planning Interval less than 8.7 periods 

(approximately), the no-expansion policy is optimal. 

mm 
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Case A; Linear Demand Function 

Comparison of No Expansion with an Optimal n=l,2  Expansion Policy 

Present Value of 
Total Cost ($) 

Planning Interval 

FIGURE 10 
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Case B:     Concave Demand Function 
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Present Value of 
Total Cost  ($) 

50-T- 

40- 

30- 

20 - 

10 15 

20 

30 

36 

n - 1 

n - 3,U 

53 

40 
"T 
50 60 

Planning Interval 

FIGURE 11 
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Case C;    Convex Demand Function 

Present Value of 
Total Cost   ($) 

30 + 

20 30 

Planning Interval 

60 

FIGURE 12 
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Discussion of Computational Results for Cases A, B and C 

The computer code permits a maximum of seven expansions.    In Cases A, 

* 
B and C, the optimal number of expansions,    n    , was four.    We note that 

the optimal value of the cost function decreases with the number of expansions 

up to   n      and Is constant for all    n > n 

The point In time at which a two stage policy first becomes optimal is 

almost the same for all three trials:    20 periods for concave and linear 

demand functions,  22 periods for the convex demand function.    Similarly, 

after 36 periods a three stage policy is optimal for Case A, 6 and C. 

Case A:    Linear Demand  Function 

In Manne  [9],  Chapter 10, Appendix B,  the following results are given 

for a linear demand  function    D(y)  = y    using  the asymptotic stationary 

policy cost function: 

x* ■= 15.17 

C 
Y"    ^.287   . 

The graphs of Figure 13, showing the optimal size of expansions as a 

function of the length of the planning Interval illustrates  three points in 

time for which the optimal policy is one of equal expansions — 30.34, 45.51 

and 60.68 periods.    These points coincide with the "regeneration" points of 

the stationary model. 

Also note that a rather long planning Interval must be used before a 

two-expansion policy is optimal (21 units)  and that smaller planning 

intervals may imply nonequally-slzed expansions. 
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For planning intervals greater than 21 periods (when the two-stage 

policy becomes optimal), the optimal size of the first expansion varies 

only slightly from the stationary value of 15.17. Similarly, after 38 

periods the second expansion varies only slightly from its stationary value 

of 15.17. Presumeably similar remarks would apply for the third expansion 

if the planning interval were extended beyond 60.68 periods. Moreover, the 

optimal number of stages for 60 periods is four, the same as for the 

stationary model. These findings tend to confirm a principal hypothesis of 

a stationary model, namely, that the optimal policy is one in which the 

expansions are of equal size. 

Optimal Size of Expansion 

In this section we consider the optimal size of each expansion as a 

function of the planning interval. The computational results are in 

graphical form.  (See Figures 13, 14 and 15). 
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Case A; Linear Demand 

Optimal Size of Expansion as a Function of the Planning Intetval Length 

A4 
20- 

15- 

10 

Planning Interval 

1 30 
Planning Interval 

FIGURE 13 

-r 
40 

T 
50 60 

Since only discrete values were computed,  the continuous curves were drawn for 
it It it 

ease of reading.    The maximum value of    x.   , x_  , x»    Is 20.    The stationary 

* 
value of    x     ,  using  the stationary model,is 15.17. 

In  the first graph above,   the optimal policy is    x.  = 0    for a planning 

Interval less  than approximately 8.7  units of time. 

MMMM^MM 
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Case B: Concave Demand 

Optimal Size of Expansion as a Function of the Planning Interval Length 

 r 
30 

Planning Interval 

T 
AC 

26 

x2 ♦ 

23- 

19- 

"T 
10 

"T" 
20 

T" 
A0 

50 

19 

T" 
50 

60 

10 - 

20 

10 

30 
Planning Interval 

T 
20 

T 
30 

Planning Interval 

FIGURE 14 

A0 50 

60 

60 

Notes; 

No graph is shown for x, because it consists of only one point at 

I = 60. 

The no-expansion policy was not  computed; hence, the graphs are drawn 

as if x1 > 0 even for small planning intervals, 
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Case C;    Convex Demand 

Optimal Size of Expansion as a Function of the Planning Interval Length 

Ä3 

21 - 

T 
10 

Planning Interval 

Planning Interval 

T- 
20 17 

T" 
40 

Z 

50 
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4 
60 

60 

A4 
28-1 

10 

Planning Interval 

Note: 

20 30 

Planning Interval 

FIGURE 15 

-r 
40 50 

The no-expansion policy was not  computed; hence, graphs are drawn as 

* 
if the optimal policy is x. > 0 even for small planning intervals. 

60 
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One result is common for all three demand functions, namely that 

x. , x. the sizes of the first and second expansions tend to fluctuate 

around some constant value.  And, this value is reached at a point in time 

just after the optimal number of stages increases from one to two for x. 

and from two to three for x  . This suggests tha', for example, the value 

of x. may be invariant with respect to a family of demand functions which 

are identical rear the origin. This portion is usually the most reliable 

part of a demand forecast.  Accordingly, we tested this idea using Case C 

to define three additional demand functions denoted Cases:  Cl, C2 and 03. 

These four demand functions are identical for I e [0,20]  only.  (See 

Figure 16.) These functions were deliberately chosen to provide distinctively 

different patterns both as to rate of growth and final values for demand at 

the end of the planning interval. 



A Family of Demand Functions 
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Case C 

Case Cl 

Planning Interval 

FIGURE 16 
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STABILITY OF x 
1 

Cases:  C. Cl, C2 and C3 

Planning Interval 

FIGURE 17 

LEGEND 

  Case C 
  Case Cl 
 Case C2 
  Case C3 
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The results, in graphical form, are shown in Figure 17. Only x. , the 

optimal value for the first expansion, is shown.  (For our purposes we have 

assumed that the optimal policy is not a no-expansion policy.) As before, a 

two stage policy is optimal at about the same time, between 22 and 25 years. 

* * (This coincides with the first decrease in x.. .)  In each case, x.  tends to 

a constant value and further, these constant values are close to one another. 

The importance of this result is as follows.  In practice one is most 

interested in ascertaining the optimal size of the first expansion because 

it is the first commitment.  Subsequently, new demand forecasts and a new 

policy can be determined.  It is generally true that the reliability of a 

demand forecast decreases with the length of the planning interval. This 

suggests treating demand forecasts parametrlcally. Our results lead us to 

conclude that if short term forecasts are reliable, good estimates can be 

made for the optimal size of the first expansion. 

MMteM 
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